A catalog of elliptic curves. Region shown is [−3,3]2 (For (a, b) = (0, 0) the function is not smooth and therefore not an elliptic curve.)

In mathematics, an elliptic curve is a plane algebraic curve defined by an equation of the form

which is non-singular; that is, the curve has no cusps or self-intersections. Formally, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O.

Quotes

  • We now know that equations of degree 3 are in some kind of border area between equations of lower degree (easy) and equations of higher degree (very hard).
  • Just as Weil's conjectures were about counting solutions to equations in a situation where the number of solutions is known to be finite, the BSD conjecture concerns the simplest class of polynomial equations—elliptic curves—for which there is no simple way to decide whether the number of solutions is finite or infinite.
  • The equations of conic sections involve at most the square of x and y, never the third or higher powers. In contrast, the equation of an elliptic curve has an -term; a typical example is
  • For about 1500 years, from the time of Diophantus to Newton, elliptic curves were known only as curves defined by certain cubic equations. This put them just a step beyond the conic sections, and some of their geometric and arithmetic properties can in fact be viewed as generalisations of properties of conics.
    • Abe Shenitzer; John Stillwell (2002). Mathematical Evolutions. Mathematical Association of America. p. 133. ISBN 978-0-88385-536-2. 

Mathematics
Mathematicians
(by country)

Abel Anaxagoras Archimedes Aristarchus of Samos Averroes Arnold Banach Cantor Cartan Chern Cohen Descartes Diophantus Erdős Euclid Euler Fourier Gauss Gödel Grassmann Grothendieck Hamilton Hilbert Hypatia Lagrange Laplace Leibniz Milnor Newton von Neumann Noether Penrose Perelman Poincaré Pólya Pythagoras Riemann Russell Schwartz Serre Tao Tarski Thales Turing Weil Weyl Wiles Witten

Numbers

1 23 360 e π Fibonacci numbers Irrational number Negative number Number Prime number Quaternion

Concepts

Abstraction Algorithms Axiomatic system Completeness Deductive reasoning Differential equation Dimension Ellipse Elliptic curve Exponential growth Infinity Integration Geodesic Induction Proof Partial differential equation Principle of least action Prisoner's dilemma Probability Randomness Theorem Topological space Wave equation

Results

Euler's identity Fermat's Last Theorem

Pure math

Abstract algebra Algebra Analysis Algebraic geometry (Sheaf theory) Algebraic topology Arithmetic Calculus Category theory Combinatorics Commutative algebra Complex analysis Differential calculus Differential geometry Differential topology Ergodic theory Foundations of mathematics Functional analysis Game theory Geometry Global analysis Graph theory Group theory Harmonic analysis Homological algebra Invariant theory Logic Non-Euclidean geometry Nonstandard analysis Number theory Numerical analysis Operations research Representation theory Ring theory Set theory Sheaf theory Statistics Symplectic geometry Topology

Applied math

Computational fluid dynamics Econometrics Fluid mechanics Mathematical physics Science

History of math

Ancient Greek mathematics Euclid's Elements History of algebra History of calculus History of logarithms Indian mathematics Principia Mathematica

Other

Mathematics and mysticism Mathematics education Mathematics, from the points of view of the Mathematician and of the Physicist Philosophy of mathematics Unification in science and mathematics


This article is issued from Wikiquote. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.