Ada Lovelace's diagram from "note G", the first published computer algorithm.

Algorithms, in mathematics and computer science, are an effective method expressed as a finite list of well-defined instructions for calculating a function. Algorithms are used for calculation, data processing, and automated reasoning. In simple words an algorithm is a step-by-step procedure for calculations.

Quotes

  • Mathematics is what we want to keep for ourselves. When playing games, we stick to the rules (or we are changing the game...), but when doing serious mathematics (not executing algorithms) we make up the rules—definitions, axioms... even logics. ...[I]n arithmetic we find prime numbers, which are a whole new 'game'... [T]o identify mathematics with games would be one of those part-for-whole mistakes (like 'all geometry is projective geometry' or 'arithmetic is just logic' from the nineteenth century)... [M]y separation of game analysis from playing games tells... against the analogy of mathematics to the expert play of the game itself.
    • Robert Spencer David Thomas, "Mathematics is Not a Game But..." (January, 2009) The Mathematical Intelligencer Vol. 31, No. 1, pp. 4-8. Also published in The Best Writing on Mathematics 2010 (2011) pp. 79-88.
  • Algorithms + Data Structures = Programs

Mathematics
Mathematicians
(by country)

Abel Anaxagoras Archimedes Aristarchus of Samos Averroes Arnold Banach Cantor Cartan Chern Cohen Descartes Diophantus Erdős Euclid Euler Fourier Gauss Gödel Grassmann Grothendieck Hamilton Hilbert Hypatia Lagrange Laplace Leibniz Milnor Newton von Neumann Noether Penrose Perelman Poincaré Pólya Pythagoras Riemann Russell Schwartz Serre Tao Tarski Thales Turing Weil Weyl Wiles Witten

Numbers

1 23 360 e π Fibonacci numbers Irrational number Negative number Number Prime number Quaternion

Concepts

Abstraction Algorithms Axiomatic system Completeness Deductive reasoning Differential equation Dimension Ellipse Elliptic curve Exponential growth Infinity Integration Geodesic Induction Proof Partial differential equation Principle of least action Prisoner's dilemma Probability Randomness Theorem Topological space Wave equation

Results

Euler's identity Fermat's Last Theorem

Pure math

Abstract algebra Algebra Analysis Algebraic geometry (Sheaf theory) Algebraic topology Arithmetic Calculus Category theory Combinatorics Commutative algebra Complex analysis Differential calculus Differential geometry Differential topology Ergodic theory Foundations of mathematics Functional analysis Game theory Geometry Global analysis Graph theory Group theory Harmonic analysis Homological algebra Invariant theory Logic Non-Euclidean geometry Nonstandard analysis Number theory Numerical analysis Operations research Representation theory Ring theory Set theory Sheaf theory Statistics Symplectic geometry Topology

Applied math

Computational fluid dynamics Econometrics Fluid mechanics Mathematical physics Science

History of math

Ancient Greek mathematics Euclid's Elements History of algebra History of calculus History of logarithms Indian mathematics Principia Mathematica

Other

Mathematics and mysticism Mathematics education Mathematics, from the points of view of the Mathematician and of the Physicist Philosophy of mathematics Unification in science and mathematics


This article is issued from Wikiquote. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.